Erlösfunktion

Erlösfunktion Definition

Die Erlösfunktion stellt dar, wie sich (Umsatz-)Erlöse in Abhängigkeit von der abgesetzten Menge entwickeln.

Erlösfunktion Beispiel

Die Erlösfunktion mit der Formel E (x) = 2 € × x mit x = Anzahl der verkauften Produkte (Absatzmenge) bedeutet, dass die Produkte zu einem Preis von 2 € verkauft werden.

Allgemein: E (x) = p × x (mit p für den Preis)

Die obige Erlösfunktion ist ein vereinfachtes Modell: es gibt nur ein Produkt, der Preis ist konstant und es besteht kein Zusammenhang zwischen Preis und Absatzmenge. Ein Erlösmaximum gibt es in diesem einfachen Modell nicht: je mehr verkauft wird, desto höher die Erlöse.

In der Realität hängt jedoch die Absatzmenge u.a. vom Preis ab und mit steigenden Verkaufspreisen fallen die Absatzmengen, vgl. Preis-Absatz-Funktion.

Setzt man die Preis-Absatz-Funktion x(p) = 100 - 2 p aus dem dortigen Beispiel ein, ist die Erlösfunktion: E (x (p)) = p × (100 - 2 p) = 100 p - 2 p2.

Bei einem Preis von z.B. 10 € bedeutet dies einen Erlös von 100 × 10 - 2 × 102 = 1.000 - 200 = 800 €.

Man kann nun das Erlösmaximum berechnen, indem man

  • die 1. Ableitung der Formel bildet: E'(x) = 100 - 2 × 2 p = 100 - 4 p und
  • diese gleich 0 setzt: 100 - 4 p = 0, das ergibt einen Preis p von 25.

Das Erlösmaximum wird also bei einem Preis von 25 erreicht, die Absatzmenge ist dann: x (25 €) = 100 - 2 × 25 = 50 und der Erlös E (50) = 25 € × 50 = 1.250 €.

Alternative Begriffe: Umsatzfunktion.