Optimale Losgröße

Optimale Losgröße Definition

Die Problemstellung der optimalen Losgröße – was ist die kostengünstigste Losgröße (die in einem Fertigungsprozess nacheinander produzierte Menge): 100 Stück, 200 Stück ... 1.000 Stück? – ähnelt der Fragestellung der optimalen Bestellmenge.

Es gibt wiederum 2 Aspekte bzgl. der Kosten zu berücksichtigen:

  • produziert das Unternehmen kleine Losgrößen (im Extremfall: 1 Stück), sind die Lager und damit die Lagerhaltungskosten (Kapitalbindung, Lagermiete, Lagerpersonalkosten) klein, dafür aber die sogenannten auflagenfixen Kosten (Rüstkosten) hoch (die Maschinen müssen nach jedem Los umgestellt werden; das kostet Zeit und damit Geld);
  • werden hingegen große Lose hergestellt, sind die Lagerhaltungskosten höher, dafür aber die auflagenfixen Kosten geringer.

Alternative Begriffe: Andlersche Losgrößenformel, klassische Losformel, Losgrößenoptimierung, Losgrößenplanung, statische Losformel.

Formel

Die Formel für die optimale Losgröße (auch als Andlersche Losgrößenformel bezeichnet) löst diesen Zielkonflikt wiederum analog zur Vorgehensweise bei der optimalen Bestellmenge:

Optimale Losgröße = Wurzel aus ((200 x Jahresbedarf x Rüstkosten je Los) / (Herstellkosten je Stück x Lagerhaltungskostensatz in Prozent))

Der Wert von 200 ist ein fester Wert, der in der Formel vorgegeben ist (siehe die Herleitung der Optimalen Bestellmenge).

Beispiel: Optimale Losgröße berechnen

Bei einem Reifenhersteller gilt:

  • die jährliche Nachfrage nach Reifen eines bestimmten Typs ist gleich 10.000 Stück (Jahresbedarf),
  • die Rüstkosten sind 100 €,
  • die (variablen) Herstellkosten eines Reifens betragen 80 € und
  • der Lagerhaltungskostensatz ist 10 %.

Dann ist die optimale Losgröße:

$$x = \sqrt{\frac{200 \cdot 10.000 \cdot 100 \, €}{80 \, € \cdot 10}} = 500$$

Die optimale Losgröße ist 500 Stück. Der Reifenhersteller müsste dann 20 mal jährlich ein Los der Losgröße 500 auflegen, um die jährliche Nachfrage von 10.000 Stück zu bedienen.