Natürlicher Logarithmus

Natürlicher Logarithmus Definition

Der natürliche Logarithmus ist der Logarithmus zur Basis e (der Eulerschen Zahl 2,718281828; hier mit 9 Nachkommastellen dargestellt) und wird üblicherweise mit ln gekennzeichnet:

ln(y) = logey (Logarithmus von y zur Basis e)

Beispiel (Logarithmus von 2 zur Basis e)

ln(2) = loge2 = 0,693147181

Das Ergebnis erhält man auf dem Taschenrechner, indem man 2 und anschließend die LN-Taste drückt.

Das beantwortet die Frage "e hoch welche Zahl ist 2?": 2,7182818280,693147181 = 2 (ggfs. kleine Rundungsdifferenzen).

Es gilt:

ln(1) = 0

ln(e) = 1

Die ln-Funktion lautet:

$$f(x) = ln(x)$$

Die Ableitung ln ist:

$$f'(x) = \frac{1}{x}$$

Alternative Begriffe: ln-Funktion, ln-Logarithmus, logarithmus naturalis (ln), natürliche Logarithmusfunktion, natürlicher Log.