Symmetrische Differenz

Symmetrische Differenz Definition

Die symmetrische Differenz zweier (oder mehrerer) Mengen ist die Menge der Elemente, die nur in einer der Mengen enthalten sind.

Beispiele

Beispiel 1: Symmetrische Differenz zweier Mengen

Menge A = {1, 2, 3}

Menge B = {1, 2, 5}

Dann ist die symmetrische Differenz die Menge {3, 5}.

Das sind die Elemente, die entweder in der Menge A (die 3) oder in der Menge B (die 5) enthalten sind, aber nicht in beiden (wie die 1 und die 2).

Beispiel 2: Symmetrische Differenz von 3 Mengen

Menge A = {1, 2, 3}

Menge B = {1, 2, 5}

Menge C = {1, 5, 7, 10}

Dann ist die symmetrische Differenz die Menge {3, 7, 10}.

Vorgehen

Um die symmetrische Differenz bei mehr oder größeren Mengen systematisch zu finden, kann man mit der ersten Menge anfangen und schauen, ob man deren Elemente in den anderen Mengen findet (am besten vorher die Mengen aufsteigend sortieren):

Die 1 in Menge A findet man auch in B (und C); deshalb durchstreichen (in Menge A und auch gleich in den anderen Mengen, in denen sie auftaucht).

Die 2 in Menge A findet man auch in B; deshalb durchstreichen.

Die 3 in Menge A findet man nicht in B und auch nicht in C; deshalb übernehmen.

Analog mit den Mengen B und C weitermachen.