Vereinigungsmenge

Vereinigungsmenge Definition

Die Vereinigungsmenge von 2 Mengen enthält sowohl die Elemente, die in der ersten Menge als auch die Elemente, die in der zweiten Menge enthalten sind (analog bei mehr als 2 Mengen).

Beispiel

Basierend auf den Beispieldaten zur Schnittmenge bzw. zum Venn-Diagramm: ein Spieler setzt beim Roulette (mit den Zahlen 0, 1, 2, ..., 36)

  • auf die ersten 12 Zahlen (also die zwölf Zahlen 1, 2, ..., 12) sowie
  • auf "ungerade" (also die achtzehn Zahlen 1, 3, 5, 7, ..., 35).

Nun soll die Wahrscheinlichkeit berechnet werden, dass der Spieler zumindest mit einem der beiden Einsätze gewinnt. Dazu ist die Vereinigungsmenge zu bilden.

Die Menge der ersten 12 Zahlen sei A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

Die Menge der ungeraden Zahlen sei B = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35}.

Die Vereinigungsmenge A $\cup \;B $ von Menge A und Menge B ist {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35}; diese 24 Zahlen sind in mindestens einer der beiden Mengen enthalten, deshalb gewinnt der Spieler bei diesen Zahlen.

Von den 37 möglichen Zahlen eines Roulettelaufs sind die oben ermittelten 24 Zahlen der Vereinigungsmenge Gewinnzahlen für den Spieler, die Wahrscheinlichkeit ist entsprechend 24/37 (ca. 65 %).