Exponentialfunktion
Exponentialfunktion Definition
Eine Exponentialfunktion sieht so aus: f (x) = b × ax.
Dabei ist
- b ein Faktor (dieser kann auch 1 sein, dann reduziert sich die Formel praktisch auf f (x) = ax);
- a die Basis bzw. Grundzahl, diese ist konstant (keine Variable) und
- x der Exponent.
Damit lassen sich exponentielles Wachstum und exponentieller Verfall beschreiben.
Beispiel
f (x) = 3 × 2x ist eine Exponentialfunktion mit b = 3 und a = 2. Für x = 1 wäre der Funktionswert f (x = 1) = 3 × 21 = 3 × 2 = 6; für x = 2 wäre der Funktionswert f (x = 2) = 3 × 22 = 3 × 4 = 12; für x = 3 wäre der Funktionswert f (x=3) = 3 × 23 = 3 × 8 = 24 u.s.w.
Exponentialfunktion Graph
Die obige Exponentialfunktion lässt sich so zeichnen:
Man sieht, dass sich die Funktion nach links der x-Achse asymptotisch annähert (aber nie berührt).
Alternative Begriffe: Allgemeine Exponentialfunktion, Exponentielle Funktion.
Exponentielles Wachstum und exponentieller Zerfall
Exponentielles Wachstum
Ist in der obigen Formel a > 1, beschreibt die Funktion ein exponentielles Wachstum bzw. eine exponentielle Zunahme.
Das ist im obigen Beispiel der Fall: die Funktionswerte nehmen mit zunehmenden x = 1, 2, 3 ... stark zu: 6, 12 , 24 ...
Exponentieller Zerfall
Ist in der obigen Formel a < 1 (aber > 0), beschreibt die Funktion einen exponentiellen Zerfall bzw. eine exponentielle Abnahme.
Beispiel
f (x) = 3 × 0,5x ist eine Exponentialfunktion mit b = 3 und a = 0,5.
Für x = 1 wäre der Funktionswert f (x=1) = 3 × 0,51 = 3 × 0,5 = 1,5;
für x = 2 wäre der Funktionswert f (x=2) = 3 × 0,52 = 3 × 0,25 = 0,75;
für x = 3 wäre der Funktionswert f (x=3) = 3 × 0,53 = 3 × 0,125 = 0,375 u.s.w.
Die Funktionswerte nehmen mit zunehmenden x stark ab.
Dasselbe tritt ein, wenn a zwar > 1, aber der Exponent negativ ist: f (x) = 3 × 2-x stellt ebenfalls einen exponentiellen Zerfall dar.
Beispiel
Für x = -1 wäre der Funktionswert f (x = -1) = 3 × 2-1 = 3 × 0,5 = 1,5;
für x = -2 wäre der Funktionswert f (x = -2) = 3 × 2-2 = 3 × 0,25 = 0,75;
für x = -3 wäre der Funktionswert f (x = -3) = 3 × 2-3 = 3 × 0,125 = 0,375 u.s.w.
Die Funktionswerte bzw. y-Werte werden immer kleiner, der Funktionsgraph nähert sich asymptotisch der x-Achse.