Lineare Interpolation
Lineare Interpolation Definition
Der Ausgangspunkt für eine lineare Interpolation ist zum Beispiel: Man hat 2 Daten- bzw. Messwerte und möchte wissen, "was dazwischen passiert" (lateinisch inter: zwischen; polire: glätten).
Bei der linearen Interpolation – es gibt noch andere wie beispielsweise die quadratische Interpolation – sucht man eine lineare Funktion bzw. Gerade, die durch die Datenpunkte verläuft.
Beispiel
Beispiel: Lineare Interpolation
Ein Eisstand verkauft an einem sonnigen Nachmittag von 14 bis 15 Uhr 10 Kugeln Eis zu einem Preis von 1 € je Kugel.
Anschließend erhöht er im Zeitraum 15 bis 16 Uhr den Preis auf 2 € und verkauft nur noch 4 Kugeln (wir nehmen an, das liegt nur am Preis und nicht an der späteren Stunde).
Als Datenpaare A und B jeweils mit Koordinaten x für den Preis und y für die verkaufte Menge (zum Eintragen in ein Koordinatensystem):
A: (1, 10) mit x1 = 1 und y1 = 10.
B: (2, 4) mit x2 = 2 und y2 = 4.
Formel
Ein Gerade g(x), die durch die beiden Punkte A und B geht, kann mit folgender Formel berechnet werden:
$$g(x) = y_1 + \frac{y_2 - y_1}{x_2 - x_1} \cdot (x - x_1)$$
$$g(x) = 10 + \frac{4 - 10}{2 - 1} \cdot (x - 1)$$
$$g(x) = 10 - 6 \cdot (x - 1)$$
$$g(x) = 10 - 6 \cdot x + 6$$
$$g(x) = 16 - 6 \cdot x$$
Es handelt sich also um eine Gerade mit y-Achsenabschnitt 16 und einer (negativen) Steigung von -6:
Kontrolle
Um zu kontrollieren, dass die Geradengleichung richtig ist, setzen wir die beiden gegebenen x-Werte ein und schauen ob sie mit den y-Werten übereinstimmen:
$$g(1) = 16 - 6 \cdot 1 = 10$$
$$g(2) = 16 - 6 \cdot 2 = 4$$
Interpolation für Schätzung verwenden
Der Eisverkäufer kann sich dann überlegen, wieviel er wohl bei einem Preis von 1,50 € verkaufen wird:
g(1,50) = 16 - 6 × 1,50 = 16 - 9 = 7 Kugeln.
Diesen Wert könnte man auch halbwegs genau aus der Grafik oben ablesen.
Linearer Zusammenhang unterstellt
Es wird ein linearer Zusammenhang unterstellt, also dass die Datenpunkte ungefähr auf einer Geraden liegen – das kann auch eine fehlerhafte Annahme sein.
Man könnte nun hier ein weiteres Experiment machen und den Preis je Kugel Eis tatsächlich auf 1,50 € senken; wenn dann der Absatz 7 Kugeln beträgt, stärkt das die Annahme des linearen Zusammenhangs.
Andere Interpolationen
Wenn der angenommene lineare Zusammenhang „nicht funktioniert“, könnte man zum Beispiel prüfen, ob ein quadratischer Zusammenhang besteht (und dieser entsprechend mit einer quadratischen Funktion beschrieben werden kann) und die Datenpunkte auf einer Parabel liegen.