Totales Differential

Totales Differential Definition

Angenommen, man hat eine Funktion mit 2 Variablen, z.B. den Umfang eines Rechtecks (mit der Länge x und der Breite y in cm) mit f (x, y) = 2x + 2y; für x = 4 und y = 3 wäre der Umfang des Rechtecks bzw. der Funktionswert f (4, 3) = 2 × 4 + 2 × 3 = 8 + 6 = 14.

Mit den partiellen Ableitungen konnte man bestimmen, wie sich der Funktionswert ändert, wenn man eine der beiden Variablen marginal (um eine Einheit) erhöht, während man die andere konstant lässt. Die partielle Ableitung nach x wäre z.B. fx (x, y) = 2, was bedeutet, dass der Umfang des Rechtecks um 2 Einheiten zunimmt, wenn die Länge x um eine Einheit erhöht wird (analog die partielle Ableitung für y).

Mit dem totalen Differential hingegen wird berechnet, wie sich der Funktionswert bzw. der Umfang des Rechtecks ändern, wenn beide Variablen x und y marginal erhöht werden:

df = 2dx + 2dy

Dabei ist 2 jeweils die partielle Ableitung und dx und dy stehen für die Veränderungen von x und y. Erhöht man x um eine Einheit und y um eine Einheit, erhöht sich der Funktionswert (der Umfang des Rechtecks) um das zweifache der Veränderung von x (also 2 Einheiten) und das zweifache der Veränderung von y (also wiederum 2 Einheiten), in Summe 4 Einheiten.

Auf das obige Beispiel angewandt (mit x von 4 auf 5 und y von 3 auf 4 erhöht):

f (5, 4) = 2 × 5 + 2 × 4 = 10 + 8 = 18.

Es erfolgt also eine Erhöhung um 4 Einheiten (von 14 auf 18), wie vom totalen Differential berechnet (für diese sehr einfache Funktion ist das totale Differential natürlich wenig ergiebig, man kommt hier auch durch Kopfrechnen weiter; für komplexere Funktionen ist das aber nicht mehr so).

Alternative Begriffe: totale Ableitung, vollständiges Differential.